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Abstract

Purpose – In the equatorial Pacific, rainfall is affected by global climate phenomena, such as El Ni~no Southern
Oscillation (ENSO). However, current publicly available methodologies for valuing weather derivatives do not
account for the influence of ENSO. The purpose of this paper is to develop a complete framework suitable for
valuing rainfall derivatives in the equatorial Pacific.
Design/methodology/approach – In this paper, we implement aMarkov chain for the occurrence of rain and
a gamma model for the conditional quantities using vector generalized linear models (VGLM). The ENSO
forecast probabilities reported by the International Research Institute for Climate and Society (IRI) are included
as independent variables using different alternatives. We then employ the Esscher transform to price rainfall
derivatives.
Findings – The methodology is applied and calibrated using the historical rainfall data collected at the El
Dorado airport weather station in Bogot�a. All the estimated coefficients turn out to be significant. The results
prove more accurate than those of Markovian gamma models based on purely statistical descriptions of the
daily rainfall probabilities.
Originality/value – This procedure introduces the novelty of incorporating variables related to the climatic
phenomena, which are the forecast probabilities regularly published for the occurrence of El Ni~no and La Ni~na.
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1. Introduction
Weather derivatives are financial instruments that hedge the risk associated with
unexpected or adverse weather conditions (Jewson and Brix, 2005; Alexandridis and
Zapranis, 2013). Their payoffs depend on the values of underlying weather variables, such
as rainfall, temperature, wind, solar irradiance, snowfall and humidity (Cao andWei, 2004).
Organizations and individuals have used weather derivatives as part of risk management
strategies to cover non-catastrophic weather events (Alexandridis and Zapranis, 2013). The
Chicago Mercantile Exchange (CME) estimated that nearly 30% of the US economy and
70% of US companies are exposed to weather risk (CME, 2005). However, pricing these
financial instruments is difficult, because the data collection accuracy can be affected by
extreme weather or systematic errors; besides, the historical record is short and the
statistical properties can be complex (Xu et al., 2008; Dischel, 2000; Little et al., 2009; Cabrera
et al., 2013).

According to the Weather Risk Management Association (WRMA), approximately 53%
of the over-the-counter (OTC)weather derivatives transactions are based on temperature, and
23% are based on rainfall (WRMA, 2011). The considerable gap between the uses of
temperature and rainfall derivatives makes it difficult to estimate the value of the underlying
asset (Cabrera et al., 2013). In contrast to the daily average temperature and daily wind speed,
the daily rainfall is a binary event that cannot be modeled using geometric Brownian motion
(GBM) or a mean-reverting (MR) stochastic process using seasonality for the mean and
variance (Wilks, 2011; Benth and Benth, 2013; Alexandridis and Zapranis, 2013).

Rainfall pricing
in the

equatorial
Pacific

589

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/0002-1466.htm

Received 26 September 2019
Revised 17 January 2020

20 March 2020
Accepted 22 March 2020

Agricultural Finance Review
Vol. 80 No. 4, 2020

pp. 589-608
© Emerald Publishing Limited

0002-1466
DOI 10.1108/AFR-09-2019-0105

https://doi.org/10.1108/AFR-09-2019-0105


Agriculture is the sector that depends most on precipitation patterns, and the weather is
one of the most uncontrollable and unpredictable factors (Alexandridis and Zapranis, 2013).
Several risk management strategies have emerged in the agricultural sector because these
producers need either precipitation derivatives or insurance (Turvey, 2001; Martin et al.,
2001). Unlike insurance contracts, which cover low-probability and high-risk events, such as
extreme temperatures, hurricanes or floods, weather derivatives usually shield revenues
against high-probability and low-risk events (Cabrera et al., 2013). Moreover, developers and
users of hydroelectric power generators and the retail, travel, transportation and construction
industries, as well as the government, are also interested in using precipitation derivatives
since, in the coming years, gradual increases in both rainfall and temperature variations due
to global climate change are expected (Grimm and Tedeschi, 2009).

There are two main fields of study in the literature on rainfall derivatives. The first
deals with accurately modeling the frequency and intensity of precipitation over time. The
most common and successful approach to simulating rainfall is the Markov chain
extended with rainfall prediction (MCPR), which was developed by Wilks (1998). The
MCPR has two stages; the first produces a sequence of wet and dry days using a Markov
chain, and the second generates a random rainfall amount for each wet day in the
sequence. Recently, Leobacher and Ngare (2011) extended the MCPR to a Markovian
gamma model that incorporates seasonality into the rainfall process. First-order Markov
models are also used in other weather prediction applications (Cao et al., 2004; Odening
et al., 2007; Goncu, 2011).

The second field of study deals with pricing rainfall derivatives. Rainfall options can be
priced using a burn analysis (Cao et al., 2004; Jewson andBrix, 2005; Spicka andHnilica, 2013),
a utility indifference (Carmona and Diko, 2005; Brockett et al., 2006; Xu et al., 2008; Lee and
Oren, 2010; H€ardle and Osipenko, 2011; Leobacher and Ngare, 2011), or an Esscher transform
(Cabrera et al., 2013). The burn analysis has difficulties predicting the occurrence of extreme
precipitation events, and the utility indifference approach is too sensitive to utility function
and its parameters (Carr et al., 2001; Jewson and Brix, 2005). Therefore, we elaborate only
Esscher transform because it preserves the structure of some traditional stochastic processes
and the independent increment property (Cabrera et al., 2013).

It is well established that the El Ni~no Southern Oscillation (ENSO) has a significant impact
on monthly and seasonal rainfall extremes in the equatorial Pacific (Grimm and Tedeschi,
2009; Ropelewski and Halpert, 1987; Aceituno, 1988). Changes caused by the shift disrupt
large-scale air movements in the tropics, triggering a cascade of global side effects, as shown
in Figure 1. Tropical Pacific warming (El Ni~no) and cooling (La Ni~na) events are identified by
subsurface ocean temperature indices, including the Oceanic Ni~no Index (ONI), the Southern
Oscillation Index (SOI), the Trans-Ni~no Index (TNI), the Multivariate ENSO Index (MEI), the
Pacific Decadal Oscillation (PDO), Ni~no1, Ni~no2, Ni~no1þ2, Ni~no3, Ni~no4, Ni~no3.4 and the
Trans-Ni~no Index (TNI) (Yu et al., 2011; NOAA, 2018). TheNational Oceanic andAtmospheric
Administration (NOAA), using a threshold of ±0:5oC for the ONI, identifies the onset of El
Ni~no (warm) and LaNi~na (cold) episodes. However, the ONI is only a set of historical data, and
there is no forecast model associated with it. This constitutes an obstacle on the way to
pricing rainfall derivatives for the equatorial Pacific. We posit that integrating the effects of
the ENSO should improve rainfall prediction models, and therefore, the pricing of rainfall
derivatives for this specific area. In this study, we develop a risk-neutral Markovian gamma
model built from the monthly seasonality and the ENSO forecast probabilities computed
monthly by the International Research Institute for Climate and Society (IRI) using vector
generalized linear models (VGLMs).

In section 2, we review the mathematical formulation of the daily rainfall model, as well as
the general framework for pricing weather derivatives. Section 3 describes the area under
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Figure 1.
Sea surface

temperature anomaly
during El Ni~no and

La Ni~na
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study and someMonte Carlo simulation results for pricing simple European options. Finally,
in Section 4, we present summaries of the findings and concluding remarks.

2. Methodology
2.1 Precipitation model
Precipitation can be forecasted using either meteorological or statistical models. The
meteorological models are limited by the short-term forecasting horizon and the technical
complexity of the implementation (Cabrera et al., 2013). On the other hand, statistical models
use data-driven techniques to fit the daily or monthly rainfall data to some well-known
probability distribution (Coles et al., 2003). Daily models can be used in order to derive any
rainfall index on a daily, monthly or yearly basis.

To develop a better framework for forecasting precipitation in the equatorial Pacific, we
follow the baseline approach presented in Wilks (1998, 2011) and Alexandridis and Zapranis
(2013). They model the rainfall process using a first-order, two-state Markov process, that is,
the probability of the rain event only depends on the previous observation. The daily amount
is modeled by a gamma distribution.

The present formulation is an extension ofWilks (1998) that integrates the effects of ENSO
and the monthly effects into models of the rainfall amount and frequency. Pricing the rainfall
derivatives then follows a risk-neutral approach by employing the Esscher transform as
formalized in Gerber and Shiu (1994, 1996) and Cabrera et al. (2013). With this approach, we
use daily data and take advantage of the availability of meteorological observations on this
time scale.

In modeling the rainfall process, we follow the baseline approach described in Wilks
(1998), which consists of two stages. The first stagemodels the frequency of precipitation, and
the second models the amount. We propose four models to include the effects of El Ni~no and
La Ni~na in the rainfall derivative prices where Model 1 is not a two-stage model, but we use it
as a benchmark:

(1) Model 1: The monthly rainfall amount (rainfall index) is modeled by a gamma
distribution with equal parameters (μ and shape) for every month.

(2) Model 2: The monthly rainfall amount is modeled separately using a precipitation
frequency process and a precipitation amount process. We assume that the rainfall
frequency is a two-state Markov process, the daily rainfall amount is a gamma
process, and both processes are conditionally independent given the month.

(3) Model 3: The monthly rainfall amount is modeled independently. We assume that the
daily rainfall frequency is a two-state Markov process, the daily rainfall amount is a
gamma process, and both processes are affected by the month and the forecast
probability of El Ni~no (pNi�no).

(4) Model 4: The monthly rainfall amount is modeled independently. We assume that the
rainfall frequency is a two-state Markov process, the daily rainfall amount is a
gamma process, and both processes are affected by the month and the difference
between the forecast probabilities of El Ni~no and La Ni~na (pNi�no − pNi�na).

2.1.1 Precipitation frequency process. The occurrence of daily precipitation is commonly
modeled as a Markov process (Moreno, 2002; Cao et al., 2004; Odening et al., 2007; Goncu,
2011). The daily rainfall amountRi on day i is the product of a random rainfall amount rt and a
rainfall occurrence process Xi :

Ri ¼ riXi (1)
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The amount process and the occurrence process are modeled separately and are
independent. Days are defined as wet if the amount of precipitation is greater than the
minimum of 0.01 inches; otherwise, they are dry. Xi represents whether precipitation
occurred on day i:

Xi ¼
�

0 if day i is dry;
1 if day i is wet:

(2)

Since Xi is modeled as a first-order Markov chain, the precipitation state for any day is fully
determined by the precipitation state on the previous day. Thus, the day-to-day transition
probabilities for reaching a given state on day i given the state at i− 1 are:

p00i ¼ PrðXi ¼ 0jXi−1 ¼ 0Þ; (3a)

p01i ¼ PrðXi ¼ 1jXi−1 ¼ 0Þ; (3b)

p10i ¼ PrðXi ¼ 0jXi−1 ¼ 1Þ; (3c)

p11i ¼ PrðXi ¼ 1jXi−1 ¼ 1Þ: (3d)

The conditional probabilities p01i and p11i are sufficient to specify their respective
Markov processes because the components of the probability vectors must separately
add to 1.

In the literature, transition probabilities are usually estimated using maximum likelihood
estimation (MLE) (Wilks, 1998; Cao et al., 2004; Alexandridis and Zapranis, 2013):

bp01i ¼ n01j

n00j þ n01j
(4)

bp11i ¼ n11j

n10j þ n11j
(5)

where n01j and n11j are the historical counts for month j of transitions from dry days to wet
days and wet days that follow wet days, respectively. The quantities n01j and n11j have the
equivalent interpretation for wet days. However, these transition probabilities do not take
proper account of ENSO. The lack of a clear deterministic trend in the occurrence of the
different states of the ENSO phenomenon dilutes its true impact when the estimated daily
rainfall probabilities come from simple MLE. In other words, the estimation of the
probabilities of transition from dry/wet days to wet days is performed without
considering the presence of El Ni~no or La Ni~na. Further elaborations, such as the use of
truncated Fourier approximations (Cabrera et al., 2013), still make strong assumptions
about some kind of underlying regular seasonality. In this paper, instead of pursuing
purely statistical means, we choose to include variables that foretell the actual ENSO-
related phenomena.

In order to include the effects of the ENSO, we propose the use of vector generalized
linear models (VGLMs) to estimate the necessary parameters from which to describe the
daily rainfall probabilities. The response variable is the day-ahead precipitation state Xi

given a current state Xi−1. Since Xi follows a Bernoulli distribution, its expected value
is pXi−11

i .
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The focus is then on specifying a VGLM that connects these probabilities with
explanatory factors that relate them to physical conditions that may foretell the states of
ENSO. One is the calendar month, which is represented by a categorical variable with an
index that runs from 1 to 12. The others are the probability forecasts for the ENSO categories
issued every month by the International Research Institute for Climate and Society (IRI).
Among the IRI conventions is one that separates the states into three ENSO categories: El
Ni~no, La Ni~na and neutral. The forecast probabilities for these categories should add to 1. The
data used for the ensuing analysis come from the IRI website. These forecast probabilities are
the result of averaging twenty forecasts produced by various institutions. Over the last few
decades, those institutions have developed different approaches to ENSO state assessment
and short-term prediction whose characters range from statistical to dynamical (Barnston
et al., 2012).

Our proposed models (Model 2, Model 3 and Model 4) use the logit function as the link
function. Thus, our generalized linear model for each initial state is:

Initial state: Xi−1 ¼ 0

lnð p01i
1� p01i

Þ ¼ β2T01 M (6a)

lnð p01i
1� p01i

Þ ¼ β3T01 M þ β302p
Ni�no
j (6b)

lnð p01i
1� p01i

Þ ¼ β4T01 M þ β402ðpNi�noj � pNi�naj Þ (6c)

Initial state: Xi−1 ¼ 1

lnð p11i
1� p11i

Þ ¼ β2T11 M (6d)

lnð p11i
1� p11i

Þ ¼ β3T11 M þ β312p
Ni�no
j (6e)

lnð p11i
1� p11i

Þ ¼ β4T11 M þ β412ðpNi�noj � pNi�naj Þ (6f)

whereM is a vector of twelve binary variables that represent themonths of the year, with one
for each categorical month j. The parameters βh01 and βh11, for h ¼ 2; 3; 4, are twelve-
dimensional vectors that contain the intercepts for eachmonth in everymodel and βhT01 are the
transposes. pNi�noj is the IRI monthly forecast probability for El Ni~no, and pNi�naj is the monthly
forecast probability for La Ni~na. A scatter plot of the data available for these two variables
reveals a high linear correlation (�0.56). Their historical running averages, called
climatological probabilities, tend to follow each other rather closely, but their spot values
for any given month, especially when one of these two categories is surging, may divert
widely. For these reasons, we choose the difference in probability forecasts as the second
option for the explanatory variable.

2.1.2 Precipitation amount process. In the literature, authors have used different
probability distributions to model rainfall amounts; these include mixed exponential (Wilks,
1998; Suhaila and Jemain, 2007; Foufoula-Georgiou and Lettenmaier, 1987) and Weibull
(Wilks, 1989) distributions. After fitting different probability densities to our data, we
propose modeling the precipitation process by fitting the number of wet days to a gamma
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distribution. As stated earlier, ri is the total rainfall amount simulated for any given wet day i.
This amount can be modeled as ri ∼Gammaðκ; θÞ, where κ is the shape parameter, and θ is
the scale parameter of the distribution.

Because it is necessary to estimate two different parameters, we propose a vector
generalized linear model (VGLM) to estimate them. The idea behind this VGLM is to transform
each parameter with logarithmic link functions and express this transformation as a linear
combination of the chosen predictors. For the last three of the four proposed models, we have:

lnðμjÞ ¼ α2T
1 M (7a)

lnðμjÞ ¼ α3T
1 M þ α3

2p
Ni�no
j (7b)

lnðμjÞ ¼ α4T
1 M þ α4

2ðpNi�noj � pNi�naj Þ (7c)

lnðkjÞ ¼ γ2T1 M (7d)

lnðkjÞ ¼ γ3T1 M þ γ32p
Ni�no
j (7e)

lnðkjÞ ¼ γ4T1 M þ γ42ðpNi�noj � pNi�naj Þ (7f)

where μj (μj ¼ κjθj) is the expected precipitation for wet days during specific month j. To fit the
model, we filter the full historical dataset by wet days. With the estimated parameters, we
simulate a synthetic daily rainfall, which is a gamma-distributed variable with the parameters
μj and κj adjusted for each month.

For any given day, the simulated amount of rainfall ri is modeled by a gamma distribution
f ðri; κj; θjÞ. For month j with m days, the simulated total rainfall is

IjðmÞ ¼
Xm
i¼1

riXi (8)

This is a random variable and conditional on the number of days in month j. It is the random
variable representing the rainfall index for month j. The corresponding number of wet days,
for the same realization of Xi, is

n ¼
Xm
i¼1

Xi (9)

This equation produces an integer with a discrete probability distribution gjðnÞ, which
complies with

Xm
i¼1

gjðiÞ ¼ 1; ∀j∈ ½1; 2; ::; 12� (10)

This distribution can be elicited from a numerical simulation. Similarly, the continuous
distribution of IjðmÞ can be partitioned conditional on m: IjðnjmÞ, with Ijðnj0Þ ¼ 0. This
partition is of interest because it permits some analytical simplification. The addition Ij of n
independent, identically gamma-distributed random variables is gamma-distributed
according to the composition rule (Prabahu, 1965; Moschopoulos, 1985; Mathai, 1982):
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f ðIj; κ; θjnÞ ¼
θ−nκI nκ−1exp

�
−Ij
θ

�
ΓðnκÞ (11)

By using this result, the probability distribution function for Ij can be written as:

f ðIj; κ; θÞ ¼
Xm
n¼1

θ−nκI nκ−1j exp
�
−Ij
θ

�
ΓðnκÞ gjðnÞ (12)

This is then the probability distribution, computed with the shape and scale parameters
estimated for each month j, for the distribution of the monthly-accumulated index Ij.

2.2 Weather derivative pricing
We now turn to the problem of pricing simple, European options using a rainfall index.
Rainfall options can be priced using burn analysis. Burn analysis tries to derive an empirical
distribution of the rainfall index using historical rainfall data (Cao et al., 2004; Jewson and
Brix, 2005; Spicka and Hnilica, 2013). With the empirical distribution, the payoff is
determined and discounted with the risk-free rate. Although this method is widely used to
price rainfall derivatives, Cao et al. (2004) found that derivative prices produced by burn
analysis are highly sensitive to historical observations. Additionally, Jewson and Brix (2005)
state that burn analysis has difficulties predicting the occurrence of extreme rainfall events,
such as those produced by strong ENSO conditions.

There are also attempts that use the utility indifference approach. Carmona and Diko
(2005) assume the existence of tradable rainfall assets. Brockett et al. (2006) andXu et al. (2008)
assume a market with a seller and a buyer and account for the correlation between the
weather index and risky assets. Lee andOren (2010) andH€ardle andOsipenko (2011) simulate
market conditions between financial investors and farmers to find equilibrium prices, and
Leobacher and Ngare (2011), assuming that weather-sensitive security exists, extend the
pricing methods to include seasonality. Nevertheless, the utility indifference approach is too
sensitive to preferences and to the risk aversion parameter (Carr et al., 2001).

Following a different approach, Cabrera et al. (2013) show how the Esscher transform
Esscher (1932) is ideally suited to price rainfall futures since it preserves the independent
increment property and the structure of some traditional stochastic processes. Classical
asset pricing theory starts with the assumption of a complete market. However, the
market for weather derivatives is incomplete in the sense that the underlying indices are
non-tradable and cannot be perfectly replicated by financial assets (Xu et al., 2008;
Cabrera et al., 2013). Gerber and Shiu (1994) showed how, with the assumption that
returns follow a normal distribution, it is possible to price derivatives contracted over
underlying indexes that do not directly trade in capital markets. For incomplete markets,
they approach derivative pricing by constructing a risk-neutral measure using the
Esscher transform. To achieve this, they assume there is a single trader who is expected
to maximize utility.

The Esscher transform maps a probability density function fPðxÞ of a random variable x
into a new probability density function fQðx; πÞ:

fQðx; πÞ ¼ expðπxÞf ðxÞR
∞

−∞
expðπxÞf ðxÞdx (13)

where π is a measure of risk aversion called the market price of risk (MPR). It is used to
calibrate the risk-neutral expectation such that observed market prices and risk-neutral
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prices match (Cabrera et al., 2013; Noven et al., 2015). After integrating the denominator
(Appendix), the Esscher transformation of the index probability function in equation (12) is:

fQðIj; π; κ; θÞ ¼
expðπIjÞ

Pm

n¼1

θ−nκ Inκ−1
j

exp

�
−Ij
θ

�
ΓðnκÞ gjðnÞPm

n¼1
gðnÞ

ðIj½πθ�1�ÞðnκÞ
(14)

The next step in pricing the rainfall option is to use equation (14) as the risk-neutral
expectation of payoff associated with the underlying weather index. For a rainfall option sold
for month i with the final index value denoted by Ii, the prices of the European call and put
options with strike level K are:

cj ¼ e−rTE½αmaxðIj � K; 0Þ� (15)

pj ¼ e−rTE½αmaxðK � Ij; 0Þ� (16)

where T is the time to exercise the option, α is the tick size and r is the risk-free rate. The
expected values are then obtained via Monte Carlo simulation. It is necessary to choose
representative values for the MPR (π).

3. Empirical analysis
To include the impact of El Ni~no and La Ni~na in rainfall derivative prices for the equatorial
Pacific, we use the daily rainfall data registered at the El Dorado Airport Weather Station
located in Bogota, Colombia. The series of daily rainfall amounts (in inches) in this study runs
from January 1972 to December 2015. The rainfall data were provided by the Instituto de
Hidrolog�ıa, Meteorolog�a y Estudios Ambientales (IDEAM) (2019), and the data for the
Oceanic Ni~no Index (ONI) came from the Climate Prediction Center–NOAA (2019a, b, c).

Figure 2 displays the monthly rainfall amounts at the IDEAMweather station at Bogot�a’s
airport between 1972 and 2015. This box-plot shows local rain seasonality with two dry
seasons and two wet seasons.

Figure 3 displays the monthly frequency of wet days and reflects a dip in frequency at
year-end. These box-plots, rainfall amounts and wet days do not quite follow the same
seasonal pattern, with the main divergence between them occurring during the middle of
the year.

Figure 4 displays the monthly average precipitation amounts when El Ni~no, La Ni~na or
neutral occurred. Under El Ni~no, themonthly precipitation is lower on average than it is under
La Ni~na, except for the month of April. The difference between them is proportionally widest
in January when precipitation during El Ni~no is less than a quarter of the precipitation during
La Ni~na. Throughout most of the year, the neutral state shows intermediate precipitation
values.

Figure 5 shows the monthly average number of wet days filtered by the IRI categories El
Ni~no, La Ni~na and neutral. Throughout the year, the average number of wet days is lower
when El Ni~no occurs than when La Ni~na occurs, except for the month of April. For average
rainy days, the variations along the year are not as marked as for rainfall. The largest
difference in averages occurs in January. Under El Ni~no, the average number of wet days in
January is 5.26 versus 9.77 days when La Ni~na dominates. It is interesting to notice that
although the trend of El Ni~no with respect to the neutral state is roughly as expected, the
monthly differences in frequency are not large, except in January and September. Comparing
Figures 4 and 5 shows that, expressed as a percentage, the differences in the effects of El Ni~no
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and La Ni~na is more visible through the precipitation amount than through the frequency of
wet days.

Unlike previous work, our strategy for constructing a distribution of the monthly rainfall
amount (the rainfall index) requires the computation of derivative prices using VGLM
estimation to obtain the parameters that characterize the probability density functions in
rainfall index simulations. In Cabrera et al. (2013), the approach consists of using Fourier
analysis to extract parameterizations of the probability density functions from historical
data. However, the irregular characteristics of the ENSO phenomenon make this approach
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Figure 2.
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less reliable. Therefore, we attempt, instead, to use GLM techniques to construct the relevant
probability density functions. We do this by specifying the model directly with the time of
year and the IRI data for ENSO forecast probabilities as independent variables. Nevertheless,
althoughwe have daily rainfall data between 1972 and 2015, we are not able to use all the data
to train the linear models, because the ENSO forecast probabilities developed by the IRI have
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Figure 5.
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1972–2015 filtered by
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only been public since 2005. As a result, model training is restricted to information from 2005
to 2015.

3.1 Estimating precipitation frequency
Table 1 shows the VGLM regression results for Model 2, Model 3 and Model 4. They share
some general trends. The negativity of all significant parameters for p01i , the dry-to-wet daily
probability estimated for month j–points to, in general, the tendency that rain is unlikely to
fall tomorrow if it did not fall today. However, that expectation mainly holds for December
and January only. In contrast, the positivity of all significant parameters in the regression
results for p11i , the wet-to-wet daily probability estimated for month j–says that, if it rains
today, it is likely to rain tomorrow, and this holds for most of the year.

InModel 3, the coefficient of the El Ni~no forecast probability is significant and negative for
p01i at 1% and for p11i at 10%. In Model 4, the difference between the forecast probabilities is
significant and negative for both p01i and p11i at the 1%level. The Akaike information criterion
(AIC), which tests the relative quality of statistical models (Akaike, 1974), performs better for
the models that include the ENSO forecast probabilities.

Models
p01i p11i

Model 2 Model 3 Model 4 Model 2 Model 3 Model 4

January �1.24*** �1.08*** �1.26*** 0.04 0.10 �0.02
(0.16) (0.16) (0.16) (0.20) (0.20) (0.20)

February �0.84*** �0.73*** �0.91*** 0.60*** 0.65*** 0.53***
(0.17) (0.17) (0.17) (0.18) (0.18) (0.18)

March �0.36** �0.25 �0.39** 0.80*** 0.83*** 0.74***
(0.16) (0.17) (0.17) (0.16) (0.16) (0.16)

April 0.33 0.44** 0.34 1.33*** 1.38*** 1.33***
(0.21) (0.21) (0.21) (0.16) (0.16) (0.16)

May 0.28 0.44** 0.34* 1.12*** 1.16*** 1.13***
(0.20) (0.20) (0.20) (0.15) (0.15) (0.15)

June �0.13 0.01 �0.09 0.89*** 0.96*** 0.93***
(0.18) (0.18) (0.18) (0.15) (0.16) (0.15)

July �0.03 0.20 0.08 0.66*** 0.76*** 0.73***
(0.17) (0.17) (0.17) (0.15) (0.16) (0.15)

August 0.14 0.33* 0.19 0.48*** 0.56*** 0.52***
(0.17) (0.18) (0.17) (0.14) (0.15) (0.15)

September �0.40*** �0.18 �0.32** 0.35** 0.42** 0.36**
(0.16) (0.17) (0.16) (0.16) (0.16) (0.16)

October 0.26 0.48** 0.34* 0.87*** 0.96*** 0.89***
(0.19) (0.20) (0.19) (0.15) (0.15) (0.15)

November 0.02 �0.25 0.11 0.92*** 1.00*** 0.93***
(0.18) (0.15) (0.19) (0.15) (0.16) (0.15)

December �0.77*** �1.52*** �0.73*** 0.35** 0.42** 0.32**
(0.16) (0.20) (0.16) (0.16) (0.17) (0.16)

pNi�noj �0.54*** �0.25*
(0.14) (0.13)

pNi�noj − pNi�naj �0.33*** �0.30***
(0.08) (0.08)

Observations 1741 1741 1741 2,275 2,275 2,275
AIC 2289.2 2276.2 2276.1 2829.0 2827.3 2815.4
BIC 2354.7 2347.2 2347.1 2897.7 2901.8 2889.9

Note(s): Standard errors are in parentheses. ***p< 0:01, **p< 0:05, *p< 0:10

Table 1.
VGLM regression
results for the rainfall
frequency process

AFR
80,4
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A different approach to model adequacy is to check the root mean square error between a
simulation and the historical series. Table 2 shows the RMSE for each month and for the
entire analysis period (2005–2015) for 10,000 Monte Carlo paths with Model 2, Model 3 and
Model 4. Model 3, which includes the probability of El Ni~no, has lower RMSEs thanModel 2 in
seven out of twelvemonths, but the total RMSE ofModel 3 is inferior by a 1:50%margin. If we
substitute the difference in the probabilities of El Ni~no and La Ni~na for the probability of El
Ni~no, the RMSE is lower, compared to Model 2, in eight out of twelve months, by 2:86%. In
summary, including the probability forecast for El Ni~no and La Ni~na improves the accuracy
of the precipitation frequency model.

3.2 Estimating the daily precipitation amount
Table 3 shows the gamma-VGLM regression results for Model 2, Model 3 and Model 4. They
share some common trends in terms of monthly significance. Nevertheless, the level of
significance associated with pNi�noj is weaker than the corresponding difference of
probabilities. Unlike the results for the expected rainfall μj, the weak to non-existent
significance of the coefficients for the forecast probabilities suggests that the shape of the
distribution is not very sensitive to the onset of ENSO-related phenomena.

Table 4 shows the RMSE for eachmonth and for the entire analysis period (2005–2015) for
the 10,000 paths of the Monte Carlo simulation for Model 2, Model 3 and Model 4. Model 3,
which includes the probability of El Ni~no, has lower RMSEs thanModel 2 for ten out of twelve
months, excluding the rainiest months in Colombia, April and October (Figure 2). If we
substitute the difference between the forecast probabilities of El Ni~no and La Ni~na for the
probability of El Ni~no, the RMSE is between Model 2 and Model 3. In summary, the inclusion
of El Ni~no and La Ni~na decreases the RMSE of the modeled daily precipitation amount.

3.3 Estimating the monthly precipitation amount and rainfall derivative prices
To simulate the monthly precipitation amount (I), we run 1,000 iterations of Model 3 and
Model 4 using our Monte Carlo simulation. Table 5 shows the RMSE for each month over the
entire period (2005–2015). The performances of Model 3 and Model 4 are similar. Therefore,
including the forecast probabilities associated with El Ni~no and La Ni~na increases the
accuracy of the precipitation frequency models.

Based on the historical forecast probabilities issued by the IRI for the occurrence of El
Ni~no and La Ni~na, the frequency and daily amount models allow the monthly precipitation to
be simulated in a way that minimizes RMSE. From this, and appropriate application of the

Model 2 Model 3 Model 4

January 2.1932 2.1284 2.1374
February 2.2953 2.2545 2.2361
March 2.3163 2.2389 2.2123
April 2.0590 2.0894 2.0919
May 2.2949 2.2733 2.2245
June 2.1643 2.2035 2.1820
July 2.2382 2.2765 2.2817
August 1.9328 1.9574 1.9564
September 2.2505 2.1135 2.0804
October 2.1006 1.9935 1.9421
November 2.1727 2.0754 1.9994
December 2.3301 2.3469 2.2573
Total 2.1986 2.1657 2.1365

Table 2.
Root-mean-square

error (RMSE) of the
precipitation frequency
simulation usingModel
2, Model 3 and Model 4
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Esscher transform, it is then possible to price simple European weather derivatives. The
pricing framework developed in section 2.2 for monthly precipitation amount as underlying
weather index produces the results of this procedure for two January derivatives, a call option
(cj) and a put option (pj). Figure 6 illustrates the price behavior predicted by Model 3, and
Figure 7 shows the corresponding results for Model 4. Each derivative is shown for three
different values of the MPR parameter. The risk-free interest rate is 2:325%. All prices are
estimated for a strike price (K) equal to 1 inch and an (arbitrary) tick of $1.

As found in the results of the VGLM regression for the rainfall frequency process and the
daily precipitation amount, the increase in forecast probability of El Ni~no generates a
decrease in the expected monthly rainfall amount. Therefore, an increase in the forecast
probability of El Ni~no produces a substantial decrease in the call option pricewhile increasing
the put option price, as shown in Figure 6. For this particular case, when the probability of El
Ni~no reaches 1, the reduction in the call option’s price is approximately 91%, and the increase
in the put option’s price is approximately 634%, compared with a probability of 0.

Model 4 is based on the belief that, instead of specifying a model with separate forecast
probabilities for the occurrence of El Ni~no or La Ni~na, it is better to assume that their
difference better stronger characterizes the effects of ENSO on the conditional probability of a
rainy day. This is the assumption that the difference Δ ðΔ ¼ pNi�noj − pNi�naj Þ is a proxy for the

Models Model 2 Model 3 Model 4

January 0.0791 0.0595 0.0700
February 0.0848 0.0624 0.0719
March 0.0839 0.0661 0.0748
April 0.0862 0.0944 0.1025
May 0.0923 0.0884 0.0948
June 0.0681 0.0590 0.0634
July 0.0554 0.0464 0.0451
August 0.0356 0.0246 0.0306
September 0.0755 0.0695 0.0750
October 0.0797 0.0966 0.0953
November 0.0927 0.0890 0.0885
December 0.1040 0.0797 0.0893
Total 0.0800 0.0726 0.0778

Models Model 1 Model 2 Model 3 Model 4

January 1.1672 1.0903 0.9736 1.0120
February 1.3553 1.3005 1.1549 1.2001
March 1.6094 1.5613 1.4866 1.4909
April 1.7763 1.6367 1.6945 1.7066
May 1.7789 1.6377 1.6274 1.6189
June 1.4634 1.2866 1.2268 1.2408
July 1.4641 1.0980 1.0639 1.0433
August 1.3550 0.9942 0.9123 0.9457
September 1.3623 1.2056 1.1147 1.1387
October 1.7190 1.5365 1.5840 1.5486
November 1.6835 1.6225 1.5275 1.4729
December 1.4260 1.3705 1.2596 1.2513
Total 1.5250 1.3800 1.3277 1.3283

Table 4.
Root-mean-square

error (RMSE) of the
daily precipitation
amount simulated

using Model 2, Model 3
and Model 4

Table 5.
Root-mean-square

error (RMSE) of the
monthly precipitation

amount simulated
usingModel 1, Model 2,
Model 3 and Model 4
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degree of certainty the forecaster has about the onset of a possible ENSO cycle. An increase in
Δgenerates a decrease in the probability of the monthly amount of rainfall, which affects the
call and put option prices. A decrease in Δ increases the probability of a monthly amount of
rainfall, widening the gap between the prices of call and put options. WhenΔ runs from−1 to
1, the call option price contracts by 92% and the put option price grows by 1; 385%.

As seen in Figures 6 and 7, the rainfall indexes simulated using Model 3 and Model 4
produce similar behavior, with Model 4 producing a slightly better price discrimination for
the different MPR sensitivities considered.

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
0.0 0.2 0.4 0.6 0.8 1.0

Pr
ic

e 
(U

SD
$)

PNino˜

Call MPR = -0.50
Call MPR = 0.00
Call MPR = 0.50
Put MPR = -0.50
Put MPR = 0.00
Put MPR = 0.50

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Pr
ic

e 
(U

SD
$)

PNino-PNina˜

Call MPR = -0.50
Call MPR = 0.00
Call MPR = 0.50
Put MPR = -0.50
Put MPR = 0.00
Put MPR = 0.50

-1.0 -0.5 0.0 0.5 1.0

˜

Figure 6.
Rainfall derivative
prices using the
probability of El
Ni~no—January: El
Dorado (Bogot�a)
Airport Station

Figure 7.
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4. Conclusions
In this paper, we develop a complete framework suitable for valuing rainfall derivatives in the
equatorial Pacific. The presence of rainfall extremes associated with the ENSO phenomenon
makes this task both more challenging and necessary as an instrument for hedging weather
risks in those latitudes. To achieve this goal, we start by following the general approach of
Cabrera et al. (2013), who use the Esscher transform to build an appropriate risk-neutral
martingale with which to compute derivative prices. This procedure introduces the market
price of risk (MPR) to value rainfall derivatives under risk-neutral probabilities. Their
approach follows strictly statistical methods to derive the necessary values for the daily
conditional probability of rainfall and obtain the best fit for the probability distribution
density given a monthly amount of rainfall.

Due to the considerable differences in weather patterns and challenged by the inadequacy
of the data provided by the Oceanic Ni~no Index (ONI), we address the need for a different
method of simulating the probability distribution of the rainfall index. In this paper, we
construct a frame based on GLM estimation of the conditional probabilities for daily rainfall
and for the estimation of the parameters of a gamma distribution fitted to themonthly rainfall
distribution function. The precipitation frequency is then modeled using a two-state Markov
process. The results of this modeling scheme were compared with other schemes without
ENSO effects that were trained on the same data set to confirm that it leads to more accurate
models of the conditions of the equatorial Pacific. The independent factors in the regression
are the forecast probabilities issued by the IRI for the occurrence of El Ni~no and La Ni~na. This
is new in the sense that these independent variables are related to physical, climatic
measurements. The regression model also includes the month as an independent variable.
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Appendix
Probability function of the rainfall index
The Esscher transform (Esscher, 1932):

fQðx; πÞ ¼ expðπxÞfPðxÞR
∞

−∞
expðπxÞf ðxÞPdx

(A.1)

where π is themarket price of the risk (MPR). The probability function of the rainfall index I during nwet
days is:

fPðI ; κ; θÞ ¼
Xm

n¼1

θ−nκI nκ−1exp
�
−I
θ

�
ΓðnκÞ gðnÞ (A.2)

wherem is the number of days in themonth and gðnÞdescribes the probability of having nwet days. The
Esscher transformation of the probability function of IðnÞ given π (MPR) is defined as:

fQðI ; π; κ; θÞ ¼
expðπIÞPm

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞR þ∞

0
expðπIÞPm

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞdI

(A.3)

fQðI ; π; κ; θÞ ¼
expðπIÞPm

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞR þ∞

0

P m

n¼1
θ−nκ

ΓðnκÞI
nκ−1exp

�
πI � I

θ

�
gðnÞdI (A.4)
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fQðI ; π; κ; θÞ ¼
expðπIÞP m

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞP m

n¼1
θ−nκ

ΓðnκÞ gðnÞ
R þ∞

0
I nκ−1exp

�
I πθ�1

θ

�
dI

(A.5)

fQðI ; π; κ; θÞ ¼
expðπIÞPm

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞP m

n¼1
θ−nκ

ΓðnκÞ gðnÞ Γðnκ�1þ1Þ
ðI πθ�1

θ Þðnκ−1þ1Þ
(A.6)

fQðI ; π; κ; θÞ ¼
expðπIÞPm

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞP m

n¼1
θnκ−nκ

ΓðnκÞ gðnÞ ΓðnκÞ
ðI ½πθ�1�ÞðnκÞ

(A.7)

fQðI ; π; κ; θÞ ¼
expðπIÞPm

n¼1

θ−nκ Inκ−1expð−Iθ Þ
ΓðnκÞ gðnÞPm

n¼1
gðnÞ

ðI ½πθ�1�ÞðnκÞ
(A.8)
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